l 学术论文 [1] Shiqi Guo#; Siliang Yan#; Kezhuo Liu; Changming Li; Liang Huang*; A strain-path dependent unified constitutive model of titanium alloy coupling coarse grain subdivision and recrystallization: application to multi-directional hot deformation, International Journal of Plasticity, 2025, 186:104248. (JCR/中科院1区,塑性力学TOP1) [2] Si-liang Yan*; Xiao-li Zhang; Miao Meng; Xiaogang Fang; Spatio-temporal distribution characteristics of coupled field and formation mechanisms of forming defects in electrically-assisted press bending of Ti2AlNb-based alloy stiffened panel, Journal of Manufacturing Processes, 2024, 122: 21-35. (JCR/中科院1区, 工程:制造TOP) [3] S.L. Yan; H. Yang*; H.W. Li**; X. Yao; A unified model for coupling constitutive behavior and micro-defects evolution of aluminum alloys under high-strain-rate deformation. International Journal of Plasticity, 2016, 85: 203-229. (JCR/中科院1区,塑性力学TOP1) [4] Si-liang Yan*; Lei Hu; Ping Li**; Xiao-li Zhang; Xiu-ming Xie; Shi-jian Cheng; Non-uniform microstructure evolution rules and mechanisms of Ti55 alloy with initial basket-weave structure during electrically-assisted V bending, Materials Science and Engineering: A, 2024, 903: 146678. (JCR 1区TOP) [5] Si-liang Yan*; Lan-qing Yang; Lei Hu; Zi-long Liu; Miao Meng**; He-li Peng; Su-tong Yu; Ke-min Xue; Unconventional mechanical responses and mechanisms of Ti-6Al-4V sheet subjected to electrically-assisted cyclic loading-unloading: thermal and athermal effects, Materials Science and Engineering: A, 2024, 918: 147394. (JCR 1区TOP) [6] Yihui Yin; Shiqing Lu; Kun Song; Xia Huang; Jun Ding; Lusheng Wang*; Siliang Yan**; Atomic-scale insights into the strength and plasticity enhancement of Ni-based superalloys with refinement dispersion of precipitates, Chemical Physics Letters, 2024, 861(1): 141837. (JCR 1区) [7] Si-liang Yan*; Zi-long Liu; Yong-qiang Zhang; Xiao-li Zhang; Ke-min Xue; Miao Meng; Molecular dynamics study on the microstructure evolution of Ti2AlNb-based alloy subjected to tensile pre-strain and electric current treatment, Journal of Materials Science, 2025, 60: 300-315. (JCR 2区) [8] 严思梁*; 时迎宾; 张晓丽; 李萍**; 薛克敏; 预变形TA15合金脉冲电处理球化行为研究. 稀有金属材料与工程, 2023,52 (5):1783-1790. (SCI) [9] 严思梁*; 胡磊; 张晓丽; 孟淼**; 薛克敏; 电磁成形中材料本构模型研究进展. 塑性工程学报, 2023, 30 (6): 10-21. (专刊约稿) [10] Xiao-li Zhang; Si-liang Yan*; Miao Meng; Xiaogang Fang; Ping Li**; Macro-micro behaviors of Ti–22Al–26Nb alloy under near isothermal electrically-assisted tension, Materials Science and Engineering: A, 2023, 864: 144573. (JCR 1区TOP) [11] Xiao-li Zhang; Si-liang Yan*; Miao Meng; Ping Li**; Macro-micro behaviors of Ti–22Al–26Nb alloy during warm tension, Materials Science and Engineering: A, 2022, 850: 143580. (JCR 1区TOP) [12] Lusheng Wang; Siliang Yan*; Miao Meng; Kemin Xue; Ping Li**; Twin boundary-assisted improvement of radiation resistance of iron: Defect evolution, mechanical properties, and deformation mechanism, Journal of Nuclear Materials, 2022, 567: 153818. (JCR /中科院1区,核材料TOP1) [13] S. Yan, H. Li, P. Li, K. Xue. Mechanisms and forming rules of large thin-walled aluminum alloy components in electromagnetic incremental forming. Procedia Manufacturing. 2018, 15: 1306-1313. (金属成形领域著名国际会议) [14] M. Meng; S. Yan*; K. Xue; X. Fan**; Modeling of quasi-trimodal microstructures formation in large-size Ti-alloy parts under near-isothermal local loading forming process, Journal of Materials Processing Technology, 2022, 299: 117327 (JCR 1区,成形制造TOP). [15] Hongwei Li; Siliang Yan*; Mei Zhan; Xin Zhang; Eddy current induced dynamic deformation behaviors of aluminum alloy during EMF: Modeling and quantitative characterization, Journal of Materials Processing Technology, 2019, 263(1): 423-439. (JCR 1区,成形制造TOP) [16] S.L. Yan; H. Yang*; H.W. Li**; X. Yao; Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range: Mechanism analysis and modeling, Journal of Alloys and Compounds, 2016, 668A: 776-786. (JCR1区TOP) [17] S.L. Yan; H. Yang*; H.W. Li**; G.Y. Ren; Experimental study of macro–micro dynamic behaviors of 5A0X aluminum alloys in high velocity deformation, Materials Science and Engineering A, 2014, 598: 197-206. (JCR1区TOP) ● 授权专利 [1] 一种高温钛合金网格筋壁板的电辅助压弯成形工艺方法与流程. ZL 202010782037.X(第1) [2] 一种用于钛合金盘轴类件的复合成形模具及工艺. ZL 202410797560.8(第1) [3] 一种自适应张紧式板材电脉冲处理设备及工艺. ZL 202410471428.8(第1) [4] 一种金属板材电辅助成形极限测试装置及方法. ZL 202410557558.3(第1) [5] 一种电辅助成形的点阵导电压边模具. ZL 202410206023.1(第1) [6] 一种电辅助成形的点阵导电压边工艺. ZL 202410205927.2(第1) [7] 一种带双侧凸筋板料及其电辅助滚压成型设备和工艺. ZL 202310596897.8(第1) [8] 一种双性能盘热模锻-差温压扭复合成形方法及模具工装. ZL 202310000460.3(第1) [9] 两相/近α钛合金电脉冲辅助改锻工艺及工装. ZL 202411245241.2(第1) [10] 一种金属板材电辅助拉伸试验的非热效应解耦分析方法. ZL 202411158913.6(第1) [11] 一种电磁驱动的板料表面冲击强韧化工装及其工艺. ZL 202411783985.X(第1) [12] 一种多级扭转成形装置及工艺. ZL 202411607601.9(第2) ● 教学成果与奖励 [1] 全国高校教师教学创新大赛安徽赛区三等奖(2023-R1、2024-R2) [2] 材料学院青年教师教学基本功比赛二等奖(2017、2021) [3] 安徽省大学生创新大赛总决赛创新创业导师(2024) [4] 近三年指导学生获大创赛(互联网+)省级金、银奖各1项,校赛金奖5项,中国青年创青春大赛(科技创新专项)国赛优秀奖1项,合工大智能杯创新创业大赛大创组三等奖等 ● 科研获奖 [1] 多时空强磁场辅助极限成形理论与方法,中国材料研究学会科学技术奖(基础研究)二等奖,2024(排名2/4) [2] 多能场塑性成形的多尺度变形机制与协同调控,陕西省自然科学一等奖,2020(排名6/6) |